Machine Learning for Predicting the Development of Postoperative Acute Kidney Injury After Coronary Artery Bypass Grafting Without Extracorporeal Circulation

Announcing a new article publication for Cardiovascular Innovations and Applications journal.   Cardiac surgery-associated acute kidney injury (CSA-AKI) is a major complication that increases morbidity and mortality after cardiac surgery. Most established predictive models are limited to the analysis of nonlinear relationships and do not adequately consider intraoperative variables and early postoperative variables. Nonextracorporeal circulation coronary artery bypass grafting (off-pump CABG) remains the procedure of choice for most coronary surgeries, and refined CSA-AKI predictive models for off-pump CABG are notably lacking. Therefore, this study used an artificial intelligence-based machine learning approach to predict CSA-AKI from comprehensive perioperative data.

In total, 293 variables were analysed in the clinical data of patients undergoing off-pump CABG in the Department of Cardiac Surgery at the First Affiliated Hospital of Guangxi Medical University between 2012 and 2021. According to the KDIGO criteria, postoperative AKI was defined by an elevation of at least 50% within 7 days, or 0.3 mg/dL within 48 hours, with respect to the reference serum creatinine level. Five machine learning algorithms—a simple decision tree, random forest, support vector machine, extreme gradient boosting and gradient boosting decision tree (GBDT)—were used to construct the CSA-AKI predictive model. The performance of these models was evaluated with the area under the receiver operating characteristic curve (AUC). Shapley additive explanation (SHAP) values were used to explain the predictive model.

The three most influential features in the importance matrix plot were 1-day postoperative serum potassium concentration, 1-day postoperative serum magnesium ion concentration, and 1-day postoperative serum creatine phosphokinase concentration.

GBDT exhibited the largest AUC (0.87) and can be used to predict the risk of AKI development after surgery, thus enabling clinicians to optimise treatment strategies and minimise postoperative complications.

https://www.scienceopen.com/hosted-document?doi=10.15212/CVIA.2023.0006

CVIA is available on the ScienceOpen platform and at Cardiovascular Innovations and Applications. Submissions may be made using ScholarOne Manuscripts. There are no author submission or article processing fees. CVIA is indexed in the EMBASE, ESCI, OCLC, Primo Central (Ex Libris), Sherpa Romeo, NISC (National Information Services Corporation), DOAJ and Index Copernicus Databases. Follow CVIA on Twitter @CVIA_Journal; or Facebook.

Article reference: Sai Zheng, Yugui Li and Cheng Luo et al. Machine Learning for Predicting the Development of Postoperative Acute Kidney Injury After Coronary Artery Bypass Grafting Without Extracorporeal Circulation. CVIA. Vol. 7(1). DOI: 10.15212/CVIA.2023.0006

Loading

Updated: December 16, 2024 — 6:25 am